A Facile One-step Synthesis of Aromatic Indolizines by 1,3-Dipolar Cycloaddition of Pyridinium and Related Heteroaromatic Ylides with Alkenes in the Presence of TPCD $[Copy_4(HCrO_4)_2]$

Xudong Wei, Yuefei Hu,* Tingsheng Li and Hongwen Hu

Department of Chemistry, Nanjing University, Nanjing 210008, People's Republic of China

A facile and general one-step method is presented for the synthesis of aromatic indolizine compounds **3a**–**n** in moderate to high yields (53–99%) by reaction of the pyridinium *N*-ylides **1a**–**e**, the quinolinium *N*-ylide **1f** and the isoquinolinium *N*-ylide **1g** with various olefinic dipolarophiles, such as acrylonitrile **2a**, methyl acrylate **2b**, acrylamide **2c**, diethyl maleate **2d** and methyl crotonate **2e**, respectively, in the presence of a new oxidant TPCD [Copy₄(HCrO₄)₂, tetrapyridinecobalt(\mathfrak{l}) dichromate] at 90 °C for 2 h in DMF.

For both practical and theoretical reasons, a number of methods have been published for the synthesis of aromatic indolizines, ¹⁻³ one of the most important, although usually low yielding, being the 1,3-dipolar cycloaddition of pyridinium and related heteroaromatic ylides with acetylenes.⁴⁻¹² Several modified methods have also been reported to lead to indolizines in relatively low yield or with relatively inaccessible materials.^{12–16} The scope of all these procedures, however, have been limited by the acetylenes, few of which are commercially available. However, methods for the preparation of aromatic indolizines by 1,3-dipolar cycloaddition of pyridinium ylides with olefinic dipolarophiles replacing acetylenes are available for certain special cases (e.g. diphenylthiirene S,S-dioxide,¹⁷ α aminoethylene derivatives,¹⁸ phenyl vinyl sulfoxide,¹⁹ 2- or 4vinylpyridines ²⁰ and α -methoxyethylene derivatives); ²¹ also a two-step procedure is possible in which the initially formed tetrahydroindolizines or dihydroindolizines are dehydrogenated by treatment with suitable reagents.^{5,6,18,22,23} All these procedures, however, suffer from drawbacks and limitations. Herein we report a simple and practical one-step method that affords aromatic indolizines in good to high yields starting from 1,3-dipolar cycloaddition of pyridinium ylides with olefinic dipolarophiles in the presence of a new oxidant TPCD [Copy₄(HCrO₄)₂, tetrapyridinecobalt(II) dichromate].

Results and Discussion

TPCD, a brown crystalline bi-metallic complex with pyridine, prepared easily by adding pyridine (4 equiv.) to aqueous chromium trioxide (2 equiv.) and cobalt(π) acetate (1 equiv.), has been found of value in the synthesis of aromatic five-membered ring nitrogen heterocycles.²⁴⁻²⁶ In continuation of our studies of the chemical behaviour of TPCD, we found that the drawbacks in the synthesis of aromatic indolizines by 1,3-dipolar cycloaddition could be solved easily by its use.

N-Phenacylpyridinium bromide **1a** (1 equiv.) and acrylonitrile **2a** (4 equiv.), (the same starting materials as used in earlier work),²³ were treated with TPCD (0.65 equiv.) in DMF and pyridine at 90 °C under nitrogen for 2 h, after which the reaction mixture was worked up to give yellow crystals, m.p. 128–130 °C (Scheme 1) identical (IR, ¹H NMR and elemental analysis) with authentic 3-benzoyl-1-cyanoindolizines **3a** (m.p. 128 °C)²³ [*cf*. 3-benzoyl-1-cyano-1,2,3,8a-tetrahydroindolizine **4** (lit.,²² m.p. 103–105 °C)]. The 1,3-dipolar cycloaddition and dehydrogenative aromatizations in this one-pot reaction gives an extraordinarily high yield (93%) not previously reported for similar procedures.

R - + N CI	l₂Bz	Br⁻ + R¹CH	=CHF	² TPCD/ 90 °C/2	Py/DMF h/53-93% R	
1			2		3	
	1	R	2	R ¹	R ²	
	1a	н	2a	н	 CN	
	1b	2-Me	2b	н	CO ₂ Me	
	1c	4-Me	2c	н	CONH₂	
	1d	3-CO ₂ Et	2d	CO ₂ Et	CO ₂ Et-cis	
	1e	4-CO ₂ Et	2e	Me	CO ₂ Me-trans	
	1f	2, 3-Benzo			-	
	10	3, 4-Benzo				

Scheme 1

To demonstrate the scope of the reaction, several other olefinic dipolarophiles, e.g. methyl acrylate 2b, acrylamide 2c, diethyl maleate 2d and methyl *trans*-crotonate 2e, were allowed to react with N-phenacylpyridinium bromide 1a under the same conditions to give the corresponding indolizines 3b-e, respectively. It is interesting that the yields of products 3 decrease in the order 3a to 3e (see Table 1), the relative activity of the olefinic dipolarophiles changing with a change in the substituents on the ethylene. The monosubstituted ethylene with the strong electron-withdrawing group CN (in 2a) gave the best yield and the 1,2-disubstituted ethylene with electronwithdrawing groups (in 2d) gave a moderate yield. The activity of ethylene with an electron-donating group (2e), was reduced significantly.

The substituted pyridinium N-ylides 1b-e were allowed to react with acrylonitrile 2a to give 3f-j also in high yield. The reaction between 1 and 2a gave an isomeric mixture of 3h and 3iin a ratio of *ca.* 1:1.4 with a total yield of 84%. Results for nonregioselective reactions have already been reported 8,11,19 and here we observed that the reaction is non-specific with respect to the ratio of isomers. However, the reaction of isoquinolinium N-ylide 1g with 2a and 2b gave the 1,2-cycloaddition products 31 and 3m, respectively. Quinolinium N-ylide 1f gave 3k in a relatively lower yield (79%).

Under the same reaction conditions, the reaction of 1a with 2a without TPCD, or in the presence of just one of the components of TPCD [CrO₃, pyridine or cobalt(II) acetate], gave none of the desired product 3a. Further, none of the 2,3-dihydro-

Table 1Indolizines 3 prepared

Bz H₂C=CHCN/TPCD/Py/DMF 90 °C/2 h/85%	3	R	R ¹	R ²	Yields (%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3a	Н	Н	CN	93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3b	Н	н	CO ₂ Me	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3c	Н	Н	CONH ₂	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3d	Н	CO ₂ Et	CO ₂ Et	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3e	Н	Me	CO ₂ Me	53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3f	5-Me	н	CN	99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3g	7-Me	Н	CN	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3ĥ	6-CO ₂ Me	Н	CN	35
$\begin{array}{c} 3k & 5,6\text{-Benzo} & H & CN & 79 \\ 3l & 7,8\text{-Benzo} & H & CN & 98 \\ 3m & 7,8\text{-Benzo} & H & CO_2Me & 82 \\ \hline \\ $	3i	$8-CO_2Me$	Н	CN	49
31 7,8-Benzo H CN 98 3m 7,8-Benzo H CO_2Me 82 CN TPCD/Py/DMF 90 °C/2 h/65% H ₂ C = CHCN/TPCD/Py/DMF 90 °C/2 h/85%	3j	$7-CO_2Me$	Н		95
$3m 7,8-Benzo H CO_2Me 82$ $CN \qquad TPCD/Py/DMF \qquad 90 °C/2 h/65\% \qquad H_2C = CHCN/TPCD/Py/DMF \qquad 3a$	3k	5,6-Benzo	н	CN	79
CN 90 °C/2 h/65% H ₂ C = CHCN/TPCD/Py/DMF 3a 90 °C/2 h/85%	31	7,8-Benzo	Н	CN	98
Bz → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1	3m	7,8-Benzo	Н	CO ₂ Me	82
00 0/2/000/0) °C/2 h/65% HCN/TPCD/Py/D	MF 3a
			90	-0/21/83%	
4		4			

indolizine 5 or aromatic indolizine **3a** was obtained when 3benzoyl-1-cyano-1,2,3,8a-tetrahydroindolizine 4^{22} was warmed with cobalt(II) acetate at 90 °C in DMF for 2 h.

Treatment of compound 4 by TPCD, with or without pyridine, at 90 °C in DMF for 2 h, led to the aromatization of 4 and formation of the indolizine 3a (Scheme 2); the best yield (65%) in this reaction was obtained in only a few experiments. With a freshly prepared sample of 4 and addition of the acrylonitrile 2a to the reaction the yield of 3a increased to 85% (it is likely that the low yield is caused by partial dissociation of 4 at higher reaction temperatures), but it is still significantly lower than that in the one-step reaction (93%). In the light of the above results and the fact that no tetrahydroindolizine or dihydroindolizine could be detected as intermediates in quenched reactions, it seems unlikely that the system involved is a simple one-pot reaction consisting of two components. We suggest that the Co^{III} component is the 'real' and active entity in the dehydrogenative aromatization and that the Cr^{VI} is actually a reoxidation agent, $(Co^{II} \rightarrow Co^{III})$ in which it is converted into Cr^{III}. The experimental evidence to support such hypotheses is not, however, at present, to hand.

Experimental

All m.p.s are uncorrected and measured with a Yanaco MP-500 apparatus. IR spectra were recorded on a Nicolet FT-IR 5DX spectrometer with KBr pellets. ¹H NMR spectra were recorded on a JEOL JNM-PMX 60SI spectrometer at ambient temperature in $CDCl_3$ with TMS as an internal reference and elemental analyses were performed on a Perkin-Elmer 240-C instrument.

Preparation of 3-Benzoyl-1-cyanoindolizine **3a**: Typical Procedure.—A solution of N-phenacylpyridium bromide **1a** (2.78 g, 10 mmol), acrylonitrile **2a** (2.12 g, 40 mmol), TPCD (4.0 g, 6.5 mmol) and pyridine (2.0 cm³) in DMF (40 cm³) was stirred at 90 °C for 2 h. The mixture was then cooled to room temperature and poured into 5% aq. HCl (100 cm³). The solution was extracted with diethyl ether (2 × 50 cm³) and the combined extracts were washed with water (2 × 50 cm³), dried (Na₂SO₄) and evaporated to give a solid. This was purified by vacuum chromatography with a short column [silica gel G, 10 µm, 25 × 50 mm, eluted with 25% ethyl acetate in light petroleum (b.p. 60–90 °C)] to give **3a** as yellow crystals (2.29 g, 93%), m.p.

128–130 °C (from EtOH) (lit.,²³ 128 °C) (Found: C, 78.1; H, 4.0; N, 12.0. $C_{16}H_{10}N_2O$. Calc. for: C, 78.03; H, 4.09; N, 11.38%); v_{max}/cm^{-1} 2200 and 1617; δ_H 7.05 (dd, J 1.0, 6.0, 1 H, ArH), 7.27 (dd, J 1.0, 6.0, 1 H, ArH), 7.40–7.90 (m, 9 H, ArH) and 9.95 (d, J 6.0, 1 H, ArH). Compounds **3b–m** were prepared by the same procedure (Table 1).

Methyl 3-benzoylindolizine-1-carboxylate **3b**. M.p. 160– 162 °C (from EtOH) (lit.,⁶ 161–162 °C) (Found: C, 73.3; H, 4.7; N, 4.8. Calc. for $C_{17}H_{13}NO_3$: C, 73.11; H, 4.69; 5.02%); v_{max}/cm^{-1} 1615, 169; δ_H 3.69 (s, 3 H, CH₃), 7.05 (dd, J 1.0, 6.0, 1 H, ArH), 7.27 (dd, J 1.0, 6.0, 1 H, ArH), 7.43–7.95 (m, 6 H, ArH), 8.40 (d, J 8.0, 1 H, ArH) and 9.93 (d, J 6.0, 1 H, ArH).

3-Benzoyl-1-carbamoylindolizine **3c**. M.p. 183–184 °C (from EtOH) (lit.,⁷ 193–194 °C) (Found: C, 72.6; H, 4.8; N, 10.5. Calc. for $C_{16}H_{12}N_2O_2$: C, 72.72; H, 4.58; N, 10.60%); v_{max}/cm^{-1} 3350, 3170, 1670 and 1635; δ_H 3.20 (s, 2 H, NH₂), 7.00–7.95 (m, 7 H, ArH), 8.55 (d, J 9.0, 1 H, ArH) and 9.86 (d, J 7.0, 1 H, ArH).

Diethyl 3-benzoylindolizine-1,2-dicarboxylate **3d**. M.p. 107–109 °C (from EtOH) (Found: C, 69.1; H, 5.25; N, 3.6. $C_{21}H_{19}NO_5$ requires C, 69.09; H, 5.24; N, 3.64%); v_{max}/cm^{-1} 1730, 1695 and 1600; δ_H 1.03 (t, J 7.0, 3 H, CH₃), 1.33 (t, J 7.0, 3 H, CH₃), 3.66 (q, J7.0, 2 H, CH₂), 4.37 (q, J7.0, 2 H, CH₂), 7.08 (dd, J 2.0, 7.0, 1 H, ArH), 7.30 (dd, J 2.0, 7.0, 1 H, ArH), 7.46–7.91 (m, 5 H, ArH), 8.40 (dd, J 1.0, 9.0, 1 H, ArH) and 9.70 (dd, J 1.0, 6.0, 1 H, ArH).

Methyl 3-benzoyl-2-methylindolizine-1-carboxylate **3e**. M.p. 116–117 °C (from EtOH) (Found: C, 73.7; H, 5.1; N, 4.6. $C_{18}H_{15}NO_3$ requires C, 73.71; H, 5.15; N, 4.60%); v_{max}/cm^{-1} 1689 and 1602; δ_H 2.23 (s, 3 H, CH₃), 3.91 (s, 3 H, CH₃), 6.97 (m, 1 H, ArH), 7.23–7.89 (m, 6 H, ArH), 8.37 (d, J9.0, 1 H, ArH) and 9.55 (d, J 7.0, 1 H, ArH).

3-Benzoyl-5-methylindolizine-1-carbonitrile **3f**. M.p. 160– 162 °C (from EtOH) (Found: C, 78.4; H, 4.7; N, 10.6. $C_{17}H_{12}N_2O$ requires C, 78.44; H, 4.65; N, 10.76%); ν_{max}/cm^{-1} 2215 and 1625; δ_H 2.59 (s, 3 H, CH₃), 7.04 (d, J 8.0, 1 H, ArH), 7.35–7.98 (m, 7 H, ArH) and 8.17 (dd, J 2.0, 7.0, 1 H, ArH).

3-Benzoyl-7-methylindolizine-1-carbonitrile **3g**. M.p. 171– 172 °C (from EtOH) (Found: C, 78.4; H, 4.4; N, 10.5. C₁₇H₁₂N₂O requires C, 78.44; H, 4.65; N, 10.76%); ν_{max}/cm^{-1} 2210 and 1610; $\delta_{\rm H}$ 2.67 (s, 3 H, CH₃), 7.10 (d, J 7.0, 1 H, ArH), 7.30–8.00 (m, 7 H, ArH) and 9.93 (d, J 7.0, 1 H, ArH).

Methyl 3-*benzoyl*-1-*cyanoindolizine*-6-*carboxylate* **3h**. M.p. 197–199 °C [EtOAc–light petroleum (60–90 °C)] (Found: C, 71.05; H, 3.8; N, 9.0. $C_{18}H_{12}N_2O_3$ requires C, 71.05; H, 3.97; N, 9.21%); v_{max}/cm^{-1} 2215, 1720 and 1618; δ_H 4.00 (s, 3 H, CH₃), 7.10–8.15 (m, 8 H, ArH) and 10.45 (d, J 7.0, 1 H, ArH).

Methyl 3-benzoyl-1-cyanoindolizine-8-carboxylate **3i**. M.p. 206–209 °C [EtOAc–light petroleum (b.p. 60–90 °C)] (Found: C, 71.1; H, 3.7; N, 9.1. $C_{18}H_{12}N_2O_3$ requires C, 71.05; H, 3.97; N, 9.21%); v_{max}/cm^{-1} 2220 and 1725; δ_H 4.07 (s, 3 H, CH₃), 7.10–8.14 (m, 8 H, ArH) and 10.10 (dd, J 1.0, 7.0, 1 H, ArH).

Methyl 3-*benzoyl*-1-*cyanoindolizine*-7-*carboxylate* **3j**. M.p. 212–214 °C (DMF) (Found: C, 71.0; H, 4.05; N, 9.3. $C_{18}H_{12}N_2O_2$ requires C, 71.05; H, 3.97; N, 9.21%); v_{max}/cm^{-1} 2220, 1725 and 1625; δ_H 4.06 (s, 3 H, CH₃), 7.45–7.95 (m, 7 H, ArH), 8.53 (d, J 7.0, 1 H, ArH) and 9.93 (d, J 7.0, 1 H, ArH).

1-Benzoylpyrrolo[1,2-a] quinoline-3-carbonitrile 3k. M.p. 180–182 °C (EtOAc-acetone) (lit.,²³ 177–179 °C) (Found: C, 81.0 H, 3.95; N, 9.3. Calc. for C₂₀H₁₂N₂O: C, 81.06; H, 4.08; N, 9.45%); ν_{max} /cm⁻¹ 2225 and 1635; $\delta_{\rm H}$ 7.33 (s, 1 H, ArH), 7.35– 7.85 (m, 8 H, ArH), 7.86–8.15 (m, 3 H, ArH).

1-Benzoylpyrrolo[2,1-a]isoquinoline-3-carbonitrile **3**I. M.p. 192–193 °C (CHCl₃) (lit.,²³ 196–197 °C) (Found: C, 80.8; H, 4.0; N, 9.35. Calc. for C₂₀H₁₂N₂O: C, 81.06; H, 4.08; N, 9.45%); v_{max}/cm^{-1} 2225 and 1630; $\delta_{\rm H}$ 7.30 (d, J 7.0, 1 H, ArH), 7.40– 7.95 (m, 9 H, ArH), 8.90 (m, 1 H, ArH) and 9.46 (d, J 7.0, 1 H, ArH). *Methyl* 1-benzoylpyrrolo[2,1-a]isoquinoline-3-carboxylate **3m**. M.p. 183–184 °C (CHCl₃-acetone) (Found: C, 76.4; H, 4.35; N, 4.2. C₂₁H₁₅NO₃ requires C, 76.58; H, 4.59; N, 4.25%); v_{max} /cm⁻¹ 1705 and 1620; δ_{H} 3.90 (s, 3 H, CH₃), 7.22 (d, J 7.0, 1 H, ArH), 7.40–7.95 (m, 9 H, ArH), 9.60 (d, J7.0, 1 H, ArH) and 9.85 (m, 1 H, ArH).

Dehydrogenation of 3-Benzoyl-1,2,3,8a-tetrahydroindolizine-1-carbonitrile 4a with TPCD.—A solution of the 1,2,3,8atetrahydroindolizine 4a²² (2.50 g, 10 mmol), TPCD (4.0 g, 6.5 mmol) and pyridine (2.0 cm³) in DMF (40 cm³) was warmed at 90 °C for 2 h. The reaction was worked up and the product was purified by the procedure described above to give 3a as yellow crystals (1.60 g, 65%), m.p. 128–129 °C.

When acrylonitrile **3a** (2.12 g, 40 mmol) was added to the reaction mixture as above under the same conditions, **3a** was obtained as yellow crystals (2.09 g, 85%), m.p. 128–129 °C.²³

References

- 1 N.S. Prostakov and O.B. Baktibaev, Russ. Chem. Rev., 1975, 44, 748.
- 2 T. Uchida and K. Matsumoto, Synthesis, 1976, 209
- 3 F. T. Swinbourne, J. H. Hunt and K. Klinkert in *Advances in Heterocyclic Chemistry*, eds. A. R. Katritzky and A. J. Boulton, vol. 23, Academic Press, New York, 1978, **32**, pp. 103–482.
- 4 V. Boekelheide and K. Fahrenholtz, J. Am. Chem. Soc., 1961, 83, 458.
 5 R. Huisgen, R. Grashey and E. Steingruber, Tetrahedron Lett., 1963,
- 1441. 6 C. A. Hendrick, E. Ritchie and W. C. Taylor, *Aust. J. Chem.*, 1967, **20**, 2467.

- 7 T. Sasaki and K. Kanematsu, J. Chem. Soc., C, 1970, 481.
- 8 T. Sasaki, K. Kanematsu, Y. Yukimoto and S. Ochiai, J. Org. Chem.,
- 1971, 36, 813. 9 T. Sasaki and T. Yoshioka, Bull. Chem. Soc. Jpn., 1971, 44, 803.
- 10 C. Leonate and I. Zugravescu, Tetrahedron Lett., 1972, 2029.
- 11 K. Matsumoto, Y. Ikemi and H. Konishi, Heterocycles, 1988, 27, 2557.
- 12 A. Padwa, D. J. Austin, L. Precedo and L. Zhi, J. Org. Chem., 1993, 58, 1144.
- 13 R. A. Abramovitch and V. Alexanian, J. Org. Chem., 1972, 41, 2144.
- 14 Y. Miki, H. Hachiken and S. Takemura, *Heterocycles*, 1984, 22, 701. 15 J. Alvarez-Builla, M. G. Quintanilla, C. Abril and M. T. Gandasegui,
- J. Chem. Res. (S), 1984, 202.
- 16 M. T. Gandasegui and J. Alvarez-Builla, J. Chem. Res. (S), 1986, 74.
 17 Y. Hayashi, H. Nakamura and H. Nozaki, Bull. Chem. Soc. Jpn., 1973, 46, 667.
- 18 N. S. Basketter and A. O. Plunkett, J. Chem. Soc., Chem. Commun., 1973, 188.
- 19 K. Matsumoto, T. Uchida and L. A. Paquette, Synthesis, 1979, 746.
- 20 P. B. Terentev, S. M. Vinogradova and A. N. Kost, Chem. Heterocycl. Compd., 1980, 16, 506.
- 21 Y. Tominaga, Y. Ichihara, T. Mori, C. Kamio and A. Hosomi, J. Heterocycl. Chem., 1990, 27, 263.
- 22 A. Kakei and S. Ito, Bull. Chem. Soc. Jpn., 1974, 47, 938.
- 23 J. Frohlich and F. Krohnke, *Chem. Ber.*, 1971, **104**, 1621.
- 24 V. Hu and H. Hu. Smith Commun. 1002 22 1401
- 24 Y. Hu and H. Hu, Synth. Commun., 1992, 22, 1491.
- 25 X. Wei, Y. Hu, T. Li and H. Hu, Synth. Commun., 1992, 22, 2103.
- 26 X. Wei, J. Fang Y. Hu and H. Hu, Synthesis, 1992, 1205.

Paper 3/01862H Received 31st March 1993 Accepted 23rd June 1993